CONTINUOUS MONITORING OF SEA WATER IN AND AROUND THE <u>ITPCL</u> POWER PROJECT AT PARANGIPETTAI, CUDDALORE DISTRICT

Monthly Data Report (January - 2025)

Submitted by

Dr. P. MURUGESAN

Associate Professor & Principal Investigator Annamalai University

Research Scholars

Dr. K. Manimaran (Research Associate)

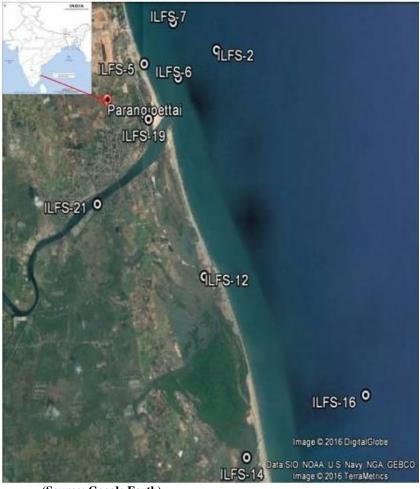
Dr. R. Punniyamoorthy

Mr. P. Chandrasekaran

Ms. Sasmita Swain

CAS IN MARINE BIOLOGY

FACULTY OF MARINE SCIENCES
ANNAMALAI UNIVERSITY


Parangipettai, 608502 Tamilnadu

January - 2025

PHYSICO - CHEMICAL AND BIOLOGICAL CHARACTERISTICS

1.1 Sampling Details

As that of previous months, the seawater quality characteristics were studied by conducting sampling in and around the ITPCL Power Project at Parangipettai, Cuddalore District both during low and high tide period during 20.01.2025 in and around the proposed sites including the open sea as shown in Fig.1. The sampling stations details like station code, time, depth and its coordinates are also given in Table 1. Further, water and sediment samples were collected in the pre-determined locations of the open sea, Vellar and Coleroon estuaries.

(Source: Google Earth)

Figure 1 Map showing the sampling Stations in ITPCL site

TABLE 1 Details of sampling stations with GPS coordinates in ITPCL site

Sl. No.	Station Code	Time	GPS Coordinates
1	ILFS-2-HT (Dredged soil dumping)	6.50 AM	11°31'27.94"N
2	ILFS-2-LT	2.10 PM	79°47'50.77"E
3	ILFS-5-HT (Intake)	7.30 AM	11°31'13.31"N
4	ILFS-5-LT	2.45 PM	79°46'14.37"E
5	ILFS-6-HT (Outfall)	8.25 AM	11°30'58.78"N
6	ILFS-6-LT	3.30 PM	79°46'59.61"E
7	ILFS-7-HT (North Break Water)	8.55 AM	11°31'56.49"N
8	ILFS-7-LT	4.10 PM	79°46'52.76"E
9	ILFS-16-HT (Off shore parallel to Mangroves-2)	9.35 AM	11°25'29.13"N
10	ILFS-16-LT	4.30 PM	79°51'10.08"E
11	ILFS-12-HT (Pichavaram Mangroves extension from Vellar-2)	10.10 AM	11°27'32.11"N
12	ILFS-12-LT	5.15 PM	79°47'34.79"E
13	ILFS-14-HT (Pichavaram Mangroves extension from Coleroon-2)	7.00 AM	11°24'23.92"N
14	ILFS-14-LT	2.05 PM	79°48'31.59"E
15	ILFS-19-HT (Annan kovil landing center)	8.15 AM	11° 30' 15.75"N
16	ILFS-19-LT	3.25 PM	79° 46'20.07"E
17	ILFS-21-HT (Pappa canal)	9.30 AM	11°28'47.22"N
18	ILFS-21-LT	4.35 PM	79°45'12.15"E

MATERIALS AND METHODS

Water samples

Water samples were collected from the predetermined stations considering the tidal influences, discharge and non-discharge points. Subsurface water samples were collected at a depth of 0.5 - 0.7 m using Niskin water sampler. For accurate measurements of the *in situ* properties and composition of seawater, proper sampling is of utmost importance. It is essential to ensure that the sampling is contamination free and all the samples were appropriately sub-

sampled and preserved to avoid/minimize changes in the water composition during storage. After sampling, adequate care was taken for measurements of hydrographic, chemical and biological properties of sea water in coastal and near-shore waters. Prior to sampling, the sampler and sampling containers were acid washed with 1N HCl in the laboratory. Sample bottles were rinsed thoroughly with the water and after that the samples were collected.

For dissolved oxygen, the samples were fixed by employing Winkler's reagent on board vessel itself and after fixing the samples were kept in shade until analysis. Temperature and pH in water were measured immediately after collection. The water samples were filtred before analysis. Trace metal samples were collected in acid-washed and pre-cleaned high density polyethylene (HDPE) bottles. Disposable, clean gloves were used while sampling and handling samples for trace metals. All samples were kept in a cool condition away from light to avoid evaporation. All samples (for trace metals) were filtered immediately using 0.22 µM pore size filter paper and acidify the pH till 2 by adding SUPRAPURE NITRIC ACID and stored in metal free plastic bags till analysis, so as to avoid contamination.

Sediment samples

Sediment samples were stored in metal free plastic bags for trace metals and in aluminum foils for organic constituents. These samples were stored in ice boxes for transportation and put to dry in an electric oven at low temperatures (about 60 degrees C) in clean glass petri-dishes.

Collection of Sediment Samples (Grab sampler)

Van veen Grab with a sampling area of 0.1 m² was employed as a standard sediment sampler, since it is (i) an efficient sampler for the range of soft surface sediments encountered in the near shore area, (ii) reliable and simple to operate and (iii) widely applied, which allows data comparison with other marine areas.

Preservation and processing of samples

Storage and Preservation of Samples: It is known that the concentration of dissolved constituents is bound to change with time, due to the biological activity of the microorganisms present in the seawater. Trace quantity are vulnerable to adsorption /desorption process, therefore, they were analyzed immediately. When immediate analysis is not possible, the recommended method include freezing the samples in -80 degree C was adopted. A quick note for sample collection and preservation procedures is given below:

Temperature, Salinity and pH analysis

The physical parameters such as temperature, salinity and pH were measured *in-situ* in the field. The subsurface temperature was measured with a mercury thermometer (±0.02°C accuracy) and the pH was measured by a calibrated pH pen (pH ep-3 model). Salinity was estimated using a Hand Refractometer (Atago, Japan). Water samples collected for dissolved oxygen estimation were transferred carefully to BOD bottles. The DO was immediately fixed and brought to the laboratory for further analysis.

Preservation and Laboratory Analysis

After collection, the samples were immediately cooled to 4°C and then brought to the laboratory in an insulated Thermocool box. In the laboratory, water samples were filtered through Whatman GF/C filter paper and analysed for organic matter and other nutrients. Unfiltered samples were used for the estimation of total nitrogen and total phosphorus. All the analyses were carried out by adopting Standard procedures for samples of aquatic origin. Briefly, the methodology for each analysis is given below:

Nitrate and Nitrite

The nitrate and nitrite content of samples were analysed by following the methods described by Strickland and Parsons (1972). The nitrite was estimated from the highly coloured azo dye formed by the addition of N (1-Napthyl) ethylene diamine di hydro-chloride and sulfanilamide into the solution was then measured at 543 nm in a spectrophotometer. The same procedure was followed for the estimation of nitrate. For this, nitrate was reduced to nitrite by passing the sample through copper coated cadmium column. The values are expressed in μ mol of Nitrogen/l

Inorganic Phosphate

The single solution mixed reagent procedure developed by Murphy and Riley (1962) was followed for the estimation of dissolved inorganic phosphate levels in water samples. This involves the conversion of phosphate into phosphomolybdic acid, which was then reduced to molybdinum blue color complexes and then the intensity of colour was measured at 882 nm in a Spectrophotometer. The calculated values are expressed in µmol of Phosphorus/l.

Total Phosphorus

The Total Phosphate in samples was estimated by adopting the method described by Menzel and Corwin (1964). This procedure involves the conversion of organically bound phosphate into inorganic phosphate by wet oxidation of samples with potassium persulphate in an Autoclave for 30 min at 15 lbs pressure. The converted inorganic phosphate was then estimated by using the method described by Murphy and Riley (1962). The subtraction of original dissolved inorganic phosphate from total phosphate yielded the organic phosphate in the water sample. The calculated value is expressed in µmol of Phosphorus/l.

Sulfate

The reactive sulfate content of water was estimated by following the method described by AWWA, WEF, APHA, 1998; Sawyer et al. (2000) and Kanagaraj et al. (2017). The turbidimetric method depends on the fact that barium sulfate formed following barium chloride addition to a sample (Equation 2) tends to precipitate in a colloidal form and this tendency is enhanced in the presence of an acidic buffer (consists of magnesium chloride, potassium nitrate, sodium acetate, and acetic acid). These precipitates need to be separated through filtration (using a filter) before the sample is analyzed for sulfate concentration. This is a very rapid method and can be used for samples with sulfate concentration greater than 10 mg/L (samples can be diluted and then it can be analyzed).

Reactive Silicate

The reactive silicate content of water was estimated by following the method of Strickland and Parsons (1972). In this method, the intensity of blue color formed by silicomolybdate complex was measured in a Spectrophotometer at 810 nm and the calculated values are expressed in µmol of Silica/I

Sediment Analysis

For the analysis of textural composition and pH, the air-dried sediment samples were used as such. For all other analyses of organic matter, sediment samples were ground to fine powder and dried in an oven at 110°C to constant weight for an hour.

Total Organic Carbon

The estimation of total organic carbon in sediment was performed by adopting the method of El Wakeel and Riley (1956). The procedure involves chromic acid digestion and

subsequent titration against ferrous ammonium sulphate solution in the presence of 1-10 Ferrous phenonthroline indicator. The values calculated are expressed in mgC/g of sediment.

Heavy Metal Analysis in Water and Sediment Samples

Seawater samples were collected in pre-cleaned polypropylene bottles with 10% nitric acid and Milli-Q water and acidified till pH ~1.6 using HNO₃ for further metal detection by using ICP-MS (Søndergaard et al., 2015). Sediment samples were collected with the aid of cleaned and dried Teflon/stainless steel coated Peterson grab. Sediment samples were transferred from the Grab to cleaned polyethylene containers using cleaned plastics scoops. The samples were stored in frozen condition for further analysis. The preserved sediment sub-samples were dried at 110°C to constant weight for estimation of metals. Dry powdered sediment was gently heated and digested with Hydrofluoric acid whereby Silica volatizes as Silicon tetra-fluoride. This is followed by treatment with Nitric acid and Per-chloric acid to destroy the organic matter. The residue after evaporation of acids was dissolved in 0.1 N HCl and desired metals were determined by Atomic Absorption Spectrophotometry (AAS).

Bacteriological Methods

Collection of samples

Surface water samples were collected in 30ml sterile screw capped bottles for bacteriological assessment. Enough air space was left in the bottles to allow thorough mixing. Precautionary measures were taken to avoid contamination through handling. For microbial assessment in sediment samples, a known quantity of samples was collected from the grab samples using sterilised spatula. The central portion of the collected sediment was aseptically transferred into sterile polyethylene bags. All the samples were brought to the laboratory in

portable icebox soon after collection and bacteriological analyses were carried out in the laboratory at CAS immediately, with necessary dilution.

Enumeration of Total Viable Counts

TVC was enumerated by adopting the spread plate method using Zobell's Marine Agar medium (EA123, Hi-Media, Mumbai). The samples (water and sediment) were diluted using the sterile sea water and 0.1 ml of the diluted sample was pippeted into the petriplates containing Zobell's Marine Agar and it was spread using a 'L' shaped glass spreader. The plates after inoculation were incubated in an inverted position at a temperature of 28+2°C for 24to 48 h. The colonies were counted and the population density expressed as Colony Forming Unit (CFU) per ml or g of the sample. The bacterial colonies were picked up from the pertidishes and re-streaked in appropriate nutrient agar plates thrice before a pure culture was established in agar slants.

Enumeration of Total Coliforms:

Macconkey agar with 0.15% bile salt, crystal violet and NaCl has been recommended in accordance with USP/Nfxi (1) for the detection, isolation and enumeration of coliforms and intestinal pathogens in water, dairy products, pharmaceutical preparations, etc. The agar weighing 51.5 g in 1000 ml distilled water was heated up to the boiling point to dissolve the medium completely and sterilized by autoclaving at 15 lbs pressure (121°C) for 15 min. suitably diluted samples were inoculated in the petriplates containing medium and were incubated for 48 h. After incubation, the colonies of *E. coli* appeared with pink color.

M-FC agar is employed for detection and enumeration Faecal Coliforms by the membrane filter technique at higher temperature (44.5°C). The agar weighing 52 g was suspended in 1000 ml of distilled water and heated up to the boiling point to dissolve the medium completely, 10ml of Rosolic acid (dissolved in 0.2 N NaOH) was added, heated with

frequent agitation and boiled for 1 min. Then the medium was cooled to 50°C. Finally, the medium was poured into small 60mm plates. Samples filtered by Millipore apparatus using 0.45µm Whatman filter papers were impregnated in the petriplates. After 48 h of incubation, the colonies of *E. coli* appeared with blue colour.

Chlorophyll `a':

The samples were filtered through Whatman GF/C filter papers and the chlorophyll was extracted into 90% acetone. The resulting colored acetone extract was measured in a spectrophotometer at different wave lengths and the same acetone extracts were acidified and measured for the phaeo-pigments. The detailed methodology as described in APHA manual (1989) was followed.

Phytoplankton

Phytoplankton samples were collected from the surface waters of the study areas by towing a plankton net (mouth diameter 0.5 m) made of bolting silk (mesh size 20 micron) for half an hour. These samples were preserved in 5% neutralized formalin and used for qualitative analysis. For quantitative analysis of phytoplankton, the settling method as described by Sukhanovo (1978) was adopted. Numerical plankton analysis was carried out using Utermohl's inverted plankton microscope.

Phytoplankton species was identified using the standard works of Hoppenrath (2009), Joosten (2006), Hällfors (2004), Venkataraman (1939), Cupp (1943), Santhanam (1987), Subramanian (1946), King County (2008), Sournia (1978), Simon (2009), Prescott (1954), Desikachary (1959 and 1987), Hendey (1964), Steidinger and Williams (1970) and Taylor (1976) and Anand *et al.* (1986).

Zooplankton

Zooplankton samples were collected from the surface waters of the study area by horizontal towing of plankton net with mouth diameter of 0.35 m, made of bolting silk (No. 70 mesh size 200 μm) for half an hour. After collection, the samples were preserved in 5 - 7% neutralized formalin and used for quantitative analysis. The zooplankton collected were identified to the species level using the classical works of Larink (2006), Helcom (2005), Goswami (2004), Alekseev (2002), Dakin and Colefax (1940), Santhanam and Srinivasan (1994), Newell and Newell (1963), Kasthurirangan (1963) and Wickstead (1965). For quantitative analysis of zooplankton, a known quantity of water (100 L) was filtered through a bag net (0.33 mm mesh size) and filtrate was made up to 1 litre in a wide mouthed bottle and then enumerated using Utermohl's inverted plankton microscope. The plankton density is expressed as number of organisms/m³.

Benthic Community

For benthic organisms, sediment samples were collected using a Van veen Grab which covered an area of 0.1m^2 . The wet sediment was sieved with varying mesh sizes for segregating the organisms. The organisms retained in the sieve were fixed in 5-7% formalin and stained further with Rose Bengal solution for easy spotting at the time of sorting. After a day or two, the organisms were sorted into various groups. The number of organisms in each Grab sample was expressed as number per square meter. According to size, benthic animals are divided into three groups: (i) macrobenthos (ii) meiobenthos and (iii) microbenthos (Mare, 1942). All the species were sorted, enumerated and identified to the advanced level possible with the consultation of available literature. The works of Fauvel (1953), Day (1967) were referred for polychaetes;

Barnes (1980) and Lyla *et al.* (1999) for crustaceans; Subba Rao *et al.* (1991) and Ramakrishna (2003) for molluscs.

1.2. Physico-chemical Parameters

The physico-chemical parameters such as depth, transparency, atmospheric temperature (AT), water temperature (WT), Turbidity, Total suspended solids (TSS), pH, salinity, dissolved oxygen (DO) and Biochemical Oxygen Demand (BOD) were analyzed and the results are given in Table 2.

TABLE 2 Physico-chemical characteristics in water samples collected in various stations of ITPCL site during January 2025

Station Code	Depth (m)	Transparency (m)	Turbidity (NTU)	TSS (mg/L)	AT (°C)	WT (°C)	pН	Salinity (PSU)	DO (mg/l)	BOD (mg/l)
ILFS-2-HT	6.1	2.1	1.75	22.73	30.18	28.3	8.25	34.55	6.16	1.42
ILFS-2-LT	7.3	2.7	2.38	20.61	30.25	28.12	8.36	34.93	5.84	2.13
ILFS-5-HT	6.8	1.9	2.81	23.95	30.41	28.75	8.28	34.75	5.79	1.86
ILFS-5-LT	7.4	1.8	2.47	21.83	30.54	28.63	8.34	33.81	6.25	1.67
ILFS-6-HT	6.9	1.6	3.29	23.64	30.67	28.96	8.27	33.57	5.79	1.45
ILFS-6-LT	6.7	2.5	2.53	22.07	30.75	28.91	8.21	33.29	6.75	2.58
ILFS-7-HT	6.3	2	3.22	24.8	27.74	26.56	8.22	34.84	6.63	2.41
ILFS-7-LT	2.8	1.7	5.39	21.66	28.59	26.75	8.21	33.24	5.96	1.89
ILFS-16-HT	2.2	1.1	6.51	24.93	27.91	26.83	8.13	31.65	6.26	2.26
ILFS-16-LT	2.9	1.4	5.74	21.58	28.68	26.94	8.27	29.44	6.41	2.04
ILFS-12-HT	2.3	1	8.92	24.72	28.35	27.35	8.22	28.36	6.59	2.47
ILFS-12-LT	2.7	1.3	10.6	22.84	28.91	27.26	8.16	27.85	6.31	1.84
ILFS-14-HT	4.7	1.3	6.37	21.52	27.85	26.48	8.16	26.75	5.9	1.46
ILFS-14-LT	4.2	1.1	8.54	24.31	30.16	28.3	8.25	26.19	5.83	1.18
ILFS-19-HT	3	1.4	9.21	22.64	29.36	26.85	8.29	23.18	6.8	1.65
ILFS-19-LT	2.4	1.1	10.96	24.83	30.55	28.64	8.21	22.41	6.77	1.31
ILFS-21-HT	2.7	1.3	10.6	22.84	28.91	27.26	8.16	27.85	6.31	1.84
ILFS-21-LT	2.1	1.9	11.74	25.11	28.59	27.64	7.93	27.21	6.68	2.47

(**Reference values:** TSS 9.70–58.70mg/L; pH 6.5-9.0; DO 3.51–8.92)

1.3. Nutrients and Petroleum Hydrocarbons

The chemical parameters like nitrite (NO₂-N), nitrate (NO₃-N), ammonia (NH₃-N), total nitrogen (TN), inorganic phosphate (IP), Total phosphorus, silicate and petroleum hydrocarbon (PHC) were analyzed and the results are given in Table 3.

TABLE 3 Nutrients and PHC values recorded in various stations of ITPCL site during January 2025

Station Code			SEAW	ATER NU	TRIENTS	S (µmol/l)			PHC
Station Code	NO ₂	NO ₃	NH ₃	TN	IP	TP	SiO ₄	SiO ₃	(µg/l)
ILFS-2-HT	0.231	0.591	0.179	11.473	0.348	1.863	23.581	13.504	0.683
ILFS-2-LT	0.205	0.516	0.162	8.564	0.417	2.475	21.525	10.836	0.617
ILFS-5-HT	0.186	0.645	0.185	9.731	0.365	2.041	23.746	10.752	0.684
ILFS-5-LT	0.152	0.563	0.147	8.294	0.472	2.638	22.584	9.649	0.541
ILFS-6-HT	0.246	0.758	0.192	10.135	0.439	1.947	24.639	13.851	0.597
ILFS-6-LT	0.211	0.694	0.186	9.681	0.525	2.653	21.503	12.093	0.543
ILFS-7-HT	0.318	1.365	0.373	7.385	0.59	1.434	26.593	12.839	0.489
ILFS-7-LT	0.351	2.183	0.395	8.739	0.625	1.279	24.844	10.945	0.654
ILFS-16-HT	0.274	1.619	0.326	8.417	0.503	1.854	25.791	14.758	0.436
ILFS-16-LT	0.349	1.452	0.384	9.626	0.575	1.422	22.084	13.694	0.674
ILFS-12-HT	0.475	1.428	0.248	9.843	0.381	1.735	26.062	13.793	0.645
ILFS-12-LT	0.629	2.036	0.272	11.186	0.463	1.35	24.147	11.457	0.782
ILFS-14-HT	0.503	1.815	0.255	10.494	0.459	1.647	23.953	10.306	0.793
ILFS-14-LT	0.584	2.348	0.318	12.663	0.361	1.219	24.625	9.531	0.864
ILFS-19-HT	0.195	0.804	0.192	12.708	0.514	1.994	25.614	12.584	0.537
ILFS-19-LT	0.164	0.716	0.168	11.094	0.577	2.368	24.937	10.493	0.514
ILFS-21-HT	0.239	0.795	0.187	12.456	0.463	2.106	26.462	13.651	0.592
ILFS-21-LT	0.213	0.737	0.163	10.738	0.591	2.714	23.493	11.947	0.516

(Reference values: NO₂: $0.05-1.03\mu$ mol/l; TN $0.87-26.16\mu$ mol/l; TP: $0.43-7.16\mu$ mol/l; NH₃ $0.01-3.70\mu$ mol/l; SO₄ -1.00 to 49.00μ mol/l)

1.4. Sediment Texture

The results of soil texture and total organic carbon (TOC) analyzed from the sediment samples are given in Table 4.

TABLE 4 Sediment Texture and Organic Carbon recorded in various stations of ITPCL site during January 2025

Station Code	Total Organic	So	il Texture (%)	
Station Code	Carbon(mgC/g)	Sand	Silt	Clay
ILFS-2-HT	6.57	83.56	8.73	7.71
ILFS-2-LT	4.86	88.31	7.47	4.22
ILFS-5-HT	5.72	85.62	7.28	7.1
ILFS-5-LT	5.96	74.83	6.94	18.23
ILFS-6-HT	6.41	76.29	7.53	16.18
ILFS-6-LT	5.83	81.57	10.46	7.97
ILFS-7-HT	5.87	83.26	9.26	7.47
ILFS-7-LT	5.36	82.31	11.23	6.46
ILFS-16-HT	5.75	81.38	12.26	6.36
ILFS-16-LT	4.34	80.35	10.42	9.23
ILFS-12-HT	2.77	84.35	9.32	6.33
ILFS-12-LT	3.61	86.28	10.43	3.28
ILFS-14-HT	4.95	54.51	17.2	28.29
ILFS-14-LT	3.74	49.28	15.64	35.08
ILFS-19-HT	4.69	61.52	14.73	23.75
ILFS-19-LT	3.52	54.92	18.41	26.67
ILFS-21-HT	6.16	61.05	21.34	17.61
ILFS-21-LT	6.38	64.38	26.38	9.23

1.5. Chlorophyll -a and phaeophytin

Chlorophyll 'a' and phaeophytin, which are considered as an index of phytoplankton density, were analyzed in the samples collected at ITPCL power project site, Parangipettai. The results are given in Table 5.

TABLE 5 Chlorophyll -a and phaeophytin levels recorded in water samples collected in various stations of ITPCL site during January 2025

Station Code	Chlorophyll 'a'(mg/m³)	Phaeophytin (mg/m³)
ILFS-2-HT	1.923	0.765
ILFS-2-LT	1.615	0.541
ILFS-5-HT	1.708	0.864
ILFS-5-LT	1.532	0.653
ILFS-6-HT	1.615	0.831
ILFS-6-LT	1.436	0.617
ILFS-7-HT	1.787	0.908
ILFS-7-LT	1.565	0.753
ILFS-16-HT	1.423	1.226
ILFS-16-LT	1.615	0.888
ILFS-12-HT	2.038	0.786
ILFS-12-LT	1.972	0.735
ILFS-14-HT	1.948	0.849
ILFS-14-LT	1.787	0.729
ILFS-19-HT	1.808	0.723
ILFS-19-LT	1.565	0.643
ILFS-21-HT	1.984	0.841

1.6. Heavy metals in seawater and sediments

The level of Heavy metals recorded in seawater and sediments samples in and around ITPCL site is given in the Tables 6 and 7.

Table 6 Heavy Metals ($\mu g/l$) in Seawater samples collected from various stations of ITPCL sites during January 2025

Station Code	Fe	Zn	Mn	Cd	Ni	Cr	Pb	Cu	Hg
ILFS-2	17.62	19.41	41.57	2.59	3.95	2.38	3.72	18.44	0.68
ILFS-5	18.75	20.89	44.73	3.02	4.31	2.92	4.08	16.63	0.75
ILFS-6	19.22	21.73	42.48	2.83	3.82	2.71	4.27	18.47	0.64
ILFS-7	16.84	20.49	41.66	3.24	3.27	1.93	4.33	19.61	0.69
ILFS-16	16.82	19.84	37.41	3.75	3.53	2.39	5.81	14.51	0.71
ILFS-12	15.37	17.51	42.37	2.1	2.44	2.72	4.39	16.28	0.62
ILFS-19	16.29	18.36	45.62	3.93	2.75	1.98	6.47	17.44	0.58
ILFS-21	14.06	22.58	43.74	3.95	3.06	2.74	4.95	18.36	0.62

(Reference values: Zn $1.02-34.11\mu g/L$; Mn $1.02-51.77\mu g/L$; Cd $4.56-9.43\mu g/L$; Ni $0.52-36.18\mu g/L$; Cr $6.55-13.9\mu g/L$ and Hg $0.52-13.45\mu g/L$)

Table 7 Heavy Metals ($\mu g/g$) in sediment samples collected from various stations of ITPCL sites during January 2025

Station Code	Fe	Zn	Mn	Cd	Ni	Cr	Pb	Cu	Hg
ILFS - 2	1574.72	15.74	70.19	12.08	14.73	10.91	12.63	30.14	0.84
ILFS - 5	1425.53	17.91	73.58	11.59	16.38	12.59	10.35	28.23	0.69
ILFS - 6	1549.31	16.85	72.31	13.63	15.94	13.82	9.74	27.55	0.73
ILFS - 7	1604.58	15.93	69.84	14.28	16.05	11.28	11.55	29.27	0.79
ILFS - 16	1539.64	16.48	69.73	13.89	16.52	11.48	8.36	23.51	0.79
ILFS - 12	1472.15	15.67	68.95	12.41	15.37	13.69	7.52	25.73	0.86
ILFS - 19	1573.08	18.44	73.61	11.73	17.69	10.54	6.49	26.52	0.92
ILFS - 21	1549.28	19.48	75.72	15.09	17.51	9.68	10.71	26.59	0.74

(Reference values: Hg 0.0-3.7 μ g/g; Cu 16-62 μ g/g; Mn 34.36-177.3 μ g/g; Ni 30-55 μ g/g; Pb 7.4-47.1 μ g/g and Cr 12.08–112.9 μ g/g)

1.7. MICROBIOLOGY

Water samples

The microbial parameters such as Total viable counts (TVC), total coliforms and *Streptococcus faecalis* (SF) were analyzed for seawater samples in and around the ITPCL power project site at Parangipettai. The results are given in Table 8. Similarly, the results of microbial parameters analysed in sediment samples are given in Table 9.

TABLE 8 Bacterial populations recorded in water samples collected in various stations of ITPCL site during January 2025

Station Code	Total Viable Count (TVC)	Total Coliforms (TC)	Streptococcus faecalis (SF)
ILFS-2-HT	11×10 ²	5×10 ²	6×10 ²
ILFS-2-LT	13×10 ²	7×10 ²	8×10 ²
ILFS-5-HT	9×10^{2}	6×10 ²	9×10^{2}
ILFS-5-LT	10×10^2	8×10 ²	11×10^2
ILFS-6-HT	10×10³	5×10 ²	12×10 ²
ILFS-6-LT	11×10^2	4×10^{2}	13×10 ²
ILFS-7-HT	20×10^2	7×10^2	13×10 ²
ILFS-7-LT	23×10 ²	10×10 ²	17×10 ²
ILFS-16-HT	21×10^2	6×10 ²	14×10^2
ILFS-16-LT	24×10^2	8×10 ³	19×10 ²
ILFS-12-HT	27×10³	14×10^3	23×10²
ILFS-12-LT	28×10 ³	18×10^3	20×10 ³
ILFS-14-HT	27×10 ³	16×10^3	19×10 ³
ILFS-14-LT	25×10 ³	17×10^3	16×10²
ILFS-19-HT	31×10^3	11×10^3	20×10 ³
ILFS-19-LT	35×10 ³	13×10 ³	25×10 ³
ILFS-21-HT	32×10 ³	12×10 ³	21×10 ³
ILFS-21-LT	36×10 ³	16×10 ³	26×10 ³

TABLE 9 Bacterial populations recorded in sediment samples collected from various stations of ITPCL site during January 2025

Station Code	Total Viable Count (TVC)	Total Coliforms (TC)	Streptococcus faecalis (SF)
ILFS-2-HT	21×10^{2}	7×10^{2}	14×10^2
ILFS-2-LT	23×10 ²	5×10 ²	15×10 ²
ILFS-5-HT	22×10^2	6×10 ²	18×10^2
ILFS-5-LT	24×10 ²	5×10 ²	17×10 ²
ILFS-6-HT	21×10 ²	7×10 ²	18×10 ²
ILFS-6-LT	23×10 ²	6×10 ²	14×10 ²
ILFS-7-HT	21×10 ²	4×10 ²	13×10 ²
ILFS-7-LT	20×10 ²	5×10 ²	16×10 ²
ILFS-16-HT	25×10 ²	8×10 ²	18×10 ²
ILFS-16-LT	29×10 ²	7×10^{2}	13×10 ²
ILFS-12-HT	30×10^2	11×10 ²	20×10 ²
ILFS-12-LT	31×10 ²	7×10 ²	16×10 ²
ILFS-14-HT	28×10 ²	9×10 ²	14×10 ²
ILFS-14-LT	32×10 ²	11×10 ²	20×10 ²
ILFS-19-HT	31×10 ²	8×10 ²	15×10 ²
ILFS-19-LT	33×10 ²	10×10 ²	20×10 ²
ILFS-21-HT	32×10 ²	12×10 ²	21×10 ²
ILFS-21-LT	34×10^2	14×10 ²	19×10 ²

1.8 Phytoplankton Density and Diversity

The results of qualitative and quantitative estimation of the phytoplankton samples done in various sampling stations are given in Tables 10(a) and 10(b). The population density varied from 6626 to 9350 Nos. /L with minimum density was recorded at station ILFS-21-LT during low tide (Pappa canal) and the maximum was in the outfall location of open sea (Station ILFS-6-HT).

TABLE 10 (a) Density of Phytoplankton recorded in various stations of ITPCL Power project site during January 2025

						No	os./L				
Sl. No.	Name of the Species	ILFS-2- HT	ILFS-2- LT	ILFS-5- HT	ILFS-5- LT	ILFS-6- HT	ILFS-6- LT	ILFS-7- HT	ILFS-7- LT	ILFS-16- HT	ILFS-16- LT
	Bacillariaceae										
1	Nitzschia longissima	142	236	164	154	280	214	150	160	198	216
2	Navicula henneydii	246	234	282	240	258	264	140	256	246	214
3	Stephanopyxis palmeriana	242	264	232	250	322	230	222	254	210	148
	Ceratiaceae										
4	Ceratium furca	164	164	152	172	142	152	142	290	360	158
5	C. lineatum	234	166	164	180	278	140	162	110	138	150
	Chaetocereae										
6	Bacteriastrum delicatulum	250	210	240	140	264	150	246	254	240	160
7	B. hyalinium	242	176	114	140	120	124	160	128	260	150
8	B. varians	150	288	150	170	136	164	128	126	126	*
9	Chaetoceros affinis	194	172	122	230	338	214	242	232	240	160
10	C. clacitrans	178	216	130	346	128	342	264	110	126	150

11	C. coarctatus	164	272	324	164	320	152	250	460	246	162
	Biddulphoidae										
12	Biddulphia heteroceros	336	228	118	120	228	114	118	116	138	168
13	B. reticulate	186	214	248	142	*	206	110	128	182	178
	Coscinodisceae										
14	Coscinodiscus centralis	282	264	246	246	254	230	280	240	650	240
15	C. gigas	236	216	140	118	274	188	148	*	122	114
16	C. granii										
17	Skeletonema costatum	246	140	150	124	230	252	140	152	168	160
18	Melosira borreri	136	152	158	132	398	128	134	130	254	230
19	Lauderia borealis	220	126	114	100	316	132	218	120	214	236
	Eucampiinae										
20	Eucampia groenlandica	132	128	246	324	130	250	326	142	140	348
21	E. zoodiacus	362	382	120	180	242	162	244	180	312	216
	Fragilariaceae										
22	Diatoma anceps	276	256	280	264	*	346	328	314	322	*
23	Thalassiosira subtilis	172	132	426	128	142	132	254	*	166	148
24	Thalassionema nitzschioides	286	246	242	124	332	420	154	280	350	*
25	T. punctigera	160	140	150	184	170	160	274	182	286	274
	Naviculoideae										
26	Gyrosigma acuminatum	230	132	140	322	456	352	142	160	134	214

	Total	7996	7618	8096	7470	9350	8434	7908	7340	8236	7608
40	Anabaena circinails	162	128	264	254	244	216	130	214	378	268
	Cyanophyceae										
39	Odontella mobiliensis	420	246	280	320	346	260	364	270	240	264
38	Lithodesmium undulatum	180	170	260	182	280	240	260	270	*	346
	Triceratiinae										
37	D. caudata	142	*	260	146	166	128	142	128	228	134
36	Dinophysis acuta	126	128	256	240	246	216	230	326	150	128
35	Pyrophacus steinii	262	254	300	246	230	282	264	240	214	240
	Pyrophacaceae										
34	R. imbricate	128	124	126	*	110	132	128	148	*	140
33	Rhizosolenia alata	246	326	282	140	250	230	128	214	172	256
32	Leptocylindrus danicus	126	238	320	170	244	264	138	120	*	282
	Soleniae										
31	Protoperidinium oceanicum	186	142	*	168	198	239	128	122	254	378
30	Peridinium claudicans	240	118	172	234	356	283	128	152	246	264
	Peridiniaceae										
29	Asterionella glacialis	184	146	240	182	368	236	328	108	170	234
28	Pleurosigma normanii	*	256	270	240	338	260	280	240	230	240
27	G. balticum	128	188	214	254	216	230	284	264	126	240

^{*} Organisms not present

TABLE 10 (b) Density of Phytoplankton recorded in various stations of ITPCL Power project site during January 2025

					N	os./L			
Sl. No.	Name of the Species	ILFS-12- HT	ILFS-12- LT	ILFS-14- HT	ILFS-14- LT	ILFS-19- HT	ILFS-19- LT	ILFS-21- HT	ILFS-21- LT
	Bacillariaceae								
1	Nitzschia longissima	126	320	264	120	180	138	144	138
2	Navicula henneydii	142	260	228	328	130	*	166	142
3	Stephanopyxis palmeriana	140	130	278	264	210	136	132	138
	Ceratiaceae								
4	Ceratium furca	156	240	164	146	150	134	154	138
5	C. lineatum	154	*	246	*	184	160	142	*
	Chaetocereae								
6	Bacteriastrum delicatulum	120	164	190	132	130	164	154	168
7	B. hyalinium	76	182	160	240	286	134	*	286
8	B. varians	148	174	250	234	284	182	164	152
9	Chaetoceros affinis	198	216	152	338	140	150	210	250
10	C. clacitrans	264	276	280	234	264	251	246	252
11	C. coarctatus	178	118	230	182	164	162	109	242
	Biddulphoidae								
12	Biddulphia heteroceros	242	196	210	240	230	256	468	100
13	B. reticulate	346	208	680	380	276	284	280	170
	Coscinodisceae								

14	Coscinodiscus centralis	180	258	180	276	164	162	194	170
15	C. gigas	148	230	248	158	128	138	120	130
16	C. granii	352	122	320	330	134	140	110	132
17	Skeletonema costatum	127	264	216	130	246	128	144	130
18	Melosira borreri	230	*	232	219	146	206	*	352
19	Lauderia borealis	338	160	140	150	130	164	312	*
	Eucampiinae								
20	Eucampia groenlandica	240	204	224	*	228	*	248	226
21	E. zoodiacus	*	134	254	262	148	164	246	242
	Fragilariaceae	142	160	140	230	152	162	264	*
22	Diatoma anceps								
23	Thalassiosira subtilis	178	230	246	250	*	270	156	264
24	Thalassionema nitzschioides	218	*	124	245	264	220	182	234
25	T. punctigera	224	224	374	334	228	*	242	148
	Naviculoideae								
26	Gyrosigma acuminatum	152	*	142	*	172	152	*	124
27	G. balticum	252	*	234	*	170	164	192	*
28	Pleurosigma normanii	280	260	*	230	280	*	240	270
29	Asterionella glacialis	296	252	242	386	212	122	142	148
	Peridiniaceae								
30	Peridinium claudicans	216	242	*	232	170	216	138	142
31	Protoperidinium oceanicum	130	150	340	208	156	128	128	168

	Soleniae								
32	Leptocylindrus danicus	132	138	216	128	210	218	136	128
33	Rhizosolenia alata	320	312	350	346	320	342	286	276
34	R. imbricate	*	142	116	214	256	124	134	142
	Pyrophacaceae								
35	Pyrophacus steinii	152	234	160	112	250	145	234	128
36	Dinophysis acuta	212	228	362	124	252	184	122	118
37	D. caudata	246	*	350	216	*	352	248	116
	Triceratiinae								
38	Lithodesmium undulatum	348	312	294	118	138	164	246	214
39	Odontella mobiliensis	253	226	160	326	128	282	124	168
	Cyanophyceae								
40	Anabaena circinails	136	132	346	270	346	264	316	280
	Total	7792	7098	9342	8332	7656	6762	7273	6626

*Organisms not present

9. Zooplankton Density and Diversity

As done for phytoplankton, zooplankton density was studied in the coastal waters of ITPCL power project site at Parangipettai, and the results are given in Tables 11(a) and 11(b). The population density varied from 5341 to 6154 Nos./m³ with minimum density recorded at station ILFS-21-LT (Pappa canal) during low tide and maximum was he North Break Water (station ILFS-7-HT).

TABLE 11(a) Density of Zooplankton recorded in various stations of ITPCL Power project site during January 2025

						N	os/m³				
Sl. No.	Name of the Species	ILFS-2- HT	ILFS-2- LT	ILFS-5- HT	ILFS-5- LT	ILFS-6- HT	ILFS-6- LT	ILFS-7- HT	ILFS-7- LT	ILFS-16- HT	ILFS-16- LT
	Protozoans										
1	Globigernia bulloides	118	126	120	114	214	116	118	120	242	132
2	G. opima	194	204	226	148	*	242	232	226	148	*
	Annelida										
3	Polychaete larvae	142	136	126	138	130	130	210	116	114	156
	Calanoid copepods										
4	Acartia danae	150	158	134	142	128	260	142	140	248	152
5	A. erythraea	150	166	154	214	148	140	240	152	*	176
6	A. spinicauda	138	160	280	186	138	128	134	138	116	156
7	Acrocalanus gibber	168	140	162	150	168	130	140	140	108	152
8	A. gracilis	148	140	150	128	128	124	312	128	124	128
9	Calanopia minor	130	134	180	128	164	132	140	160	148	152
10	Centropages furcatus	342	286	170	186	140	178	134	210	214	158
11	Labidocera acuta	148	138	138	120	270	148	156	140	132	148
12	Paracalanus parvus	228	432	332	232	228	130	206	118	402	120
13	Pseudodiaptomus aurivilli	116	118	120	*	350	120	120	*	326	114
14	Temora stylifera	128	291	160	430	160	106	116	156	140	246
	Harpacticoid copepods										
15	Clytmnestra scutellata	164	218	216	224	152	242	164	140	160	160
16	Euterpina acutifrons	242	118	230	242	168	336	182	114	264	152

17	Macrosetella gracilis	158	154	236	128	132	130	110	112		
18	Metis jousseaumei	230	264	222	232	200	222	210	212	*	132
	Cyclopoid copepod										
19	Corycaeus catus	196	142	164	164	150	162	106	162	164	214
20	Oithona brevicornis	156	*	148	146	280	162	168	230	256	*
21	O. rigida	128	140	140	138	146	*	156	142	130	130
22	O. similes	130	128	346	264	152	110	150	134	140	178
	Coelenterate										
23	Aurelia aurita	156	133	264	126	250	138	130	180	142	142
	Spirotrichea										
24	Favella brevis	*	140	130	132	246	138	264	278	234	264
25	F. philipiensis	124	*	120	*	116	124	156	206	148	138
26	Tintinnopsis tubulosa	164	142	148	160	122	118	188	136	140	164
	Decapoda										
27	Lucifer hanseni	118	154	140	120	130	216	164	216	142	166
	Other Crustacean forms										
28	Barnacle nauplii	130	120	172	108	104	102	254	124	208	224
29	Copepod nauplii	164	150	156	134	148	128	158	216	*	126
30	Mysis larvae	126	112	152	234	124	*	260	142	136	246
	Mollusca										
31	Gastropod veliger	122	128	174	122	258	216	232	148	464	168
	Larvacea										
32	Oikopleura parva	120	154	146	168	138	132	220	228	231	228
33	O. dioica	232	124	154	264	152	138	342	220	210	284

	Rotatoria										
34	Brachionus rubens	168	140	*	150	168	130	140	140	108	352
	Total	5328	5290	5910	5572	5702	5028	6154	5424	5739	5458

*Organisms not present

TABLE 11(b) Density of Zooplankton recorded in various stations of ITPCL Power project site during January 2025

					Nos	s/m ³			
Sl. No.	Name of the Species	ILFS-12- HT	ILFS-12- LT	ILFS-14- HT	ILFS-14- LT	ILFS-19- HT	ILFS-19- LT	ILFS-21- HT	ILFS-21- LT
	Protozoans								
1	Globigernia bulloides	120	110	*	118	166	160	138	240
2	G. opima	236	*	210	222	140	142	170	146
	Annelida								
3	Polychaete larvae	130	128	226	124	130	140	132	240
	Calanoid Copepod								
4	Acartia danae	120	104	142	216	126	156	158	144
5	A. erythraea	144	132	138	126	122	126	142	144
6	A. spinicauda	164	382	242	124	204	240	*	110
7	Acrocalanus gibber	230	430	126	178	118	*	242	175
8	A. gracilis	210	214	140	242	196	468	134	172
9	Calanopia minor	110	146	*	326	*	142	150	116
10	Centropages furcatus	210	128	152	118	212	171	216	*

11	Labidocera acuta	170	142	248	156	124	*	142	134
12	Paracalanus parvus	130	132	130	270	216	216	142	138
13	Pseudodiaptomus aurivilli	126	128	152	144	142	140	150	154
14	Temora stylifera	136	360	220	146	122	102	128	122
	Harpacticoid copepod								
15	Clytmnestra scutellata	160	124	152	156	128	130	150	128
16	Euterpina acutifrons	204	178	198	242	178	232	198	324
17	Macrosetella gracilis	160	148	150	128	*	258	154	158
18	Metis jousseaumei	180	240	140	*	132	138	160	142
	Cyclopoid copepod								
19	Corycaeus catus	144	*	150	164	114	108	140	142
20	Oithona brevicornis	160	124	152	156	128	130	150	128
21	O. rigida	158	154	170	138	140	240	132	148
22	O. similes	*	152	238	226	*	110	132	*
	Coelenterate								
23	Aurelia aurita	174	206	352	*	264	288	324	170
	Spirotrichea								
24	Favella brevis	284	240	140	217	372	360	346	360
25	F. philipiensis	151	168	150	186	178	124	148	152
26	Tintinnopsis tubulosa	264	170	234	184	186	154	256	160
	Decapoda								
27	Lucifer hanseni	116	150	230	146	164	138	148	144

	Other Crustacean forms								
28	Barnacle nauplii	192	188	194	*	186	226	148	164
29	Copepod nauplii	134	148	250	254	210	*	254	116
30	Mysis larvae	250	230	112	160	124	110	134	234
	Mollusca								
31	Gastropod veliger	164	158	282	182	174	176	134	182
	Larvacea								
32	Oikopleura parva	232	142	120	216	162	248	150	162
33	O. dioica	340	126	140	348	240	142	158	168
	Rotatoria								
34	Brachionus rubens	140	152	120	212	342	110	160	124
	Total	5843	5734	5800	5825	5440	5625	5620	5341

*Organisms not present

2.0. Macro benthos Density and Diversity

The density and species diversity of Macrobenthos recorded in various stations of ITPCL power project site at Parangipettai are given in Tables 12(a) and 12(b). The population density varied from 1750 to 2375 Nos./m³ with minimum density was recorded at station ILFS-21-LT (Pappa canal) during low tide and maximum in the Dredged soil dumping open sea (station ILFS-2-HT).

TABLE 12(a) Density and Diversity of Macrobenthos recorded in various stations of ITPCL Power project site during January 2025

						Nos/m^2							
Sl. No.	Name of the Species	ILFS-2- HT	ILFS-2- LT	ILFS-5- HT	ILFS-5- LT	ILFS-6- HT	ILFS-6- LT	ILFS-7- HT	ILFS-7- LT	ILFS-16- HT	ILFS-16- LT		
	Polychaetes												
1	Ampharete acutifrons	50	25	25	25	25	25	25	50	50	50		
2	Dorvillea rudolphi	25	125	25	50	75	25	25	75	100	75		
3	Chone collaris	50	75	25	*	175	25	75	25	50	25		
4	C. filicaudata	25	25	50	175	25	25	25	50	75	50		
5	Cirratulus chrysoderma	*	50	25	25	25	*	50	75	50	25		
6	C. cirratus	25	50	50	50	50	50	50	*	150	50		
7	Cossura coasta	50	75	50	75	50	50	75	50	75	75		
8	Euchone rosea	25	125	25	25	25	25	25	50	*	50		
9	Euclymene lumbricoides	125	75	75	75	50	25	25	75	50	50		
10	Exogone clavator	50	50	50	*	50	*	25	50	175	50		
11	Glycera benguellana	25	25	25	25	125	25	50	75	50	75		
12	Goniada emerita	75	50	50	75	75	150	75	25	175	25		
13	Nephtys dibranchis	25	*	100	25	50	*	50	25	50	75		
14	Nereis sp.	50	75	75	50	25	50	50	75	125	75		
15	Notomastus aberans	75	75	25	250	25	*	50	25	25	50		
16	N. faveli	175	150	50	125	50	25	75	75	25	*		
17	Onuphis eremita	50	25	75	50	25	150	50	25	25	25		
18	O. gracilis	75	75	25	125	25	50	75	25	50	50		

	Total	2375	2000	2150	2100	2125	2075	1950	1825	2100	1850
37	Perna viridis	*	75	*	50	75	50	50	50	*	50
36	Donax scortum	50	*	175	50	*	75	25	25	25	25
35	Crassostrea madrasensis	25	25	25	50	50	50	25	75	*	125
34	Cardium veligers	50	*	75	75	175	*	75	*	25	75
	Bivalves										
33	Penaeid shrimp larvae	175	50	*	50	75	100	75	50	50	25
32	Copepod nauplii	100	25	50	*	50	50	125	100	*	25
31	Ampithoe rubricata	100	*	150	50	100	50	50	25	*	75
	Crustaceans										
30	Umbonium vestiarium	25	50	50	*	25	50	75	*	75	75
29	Turritella attenuata	75	75	100	25	25	25	50	*	50	125
28	Natica didyma	150	*	75	175	150	150	*	50	100	50
27	Nassarius stollatus	75	100	125	25	100	75	75	50	150	50
26	Cerithedia cingulata	50	50	25	25	50	25	50	50	50	*
	Gastropods										
25	Terebellides stroemi	100	75	75	50	75	75	75	50	50	50
24	Syllis gracilis	50	50	125	50	25	150	25	50	25	*
23	Scolelepis squamata	25	75	75	100	25	50	25	50	50	50
22	Pygospio elegans	125	50	50	50	75	125	125	50	25	50
21	Prionospio cirrifera	125	50	50	25	50	75	50	25	25	25
20	Pista cristata	75	75	75	*	25	175	75	50	50	50
19	Owenia fusiformis	25	25	25	25	25	25	25	225	50	50

^{*} Organisms not present

TABLE 12(b) Density and Diversity of Macrobenthos recorded in various stations of ITPCL Power project site during January 2025

			Nos/m ² H EC 12 H EC 14 H EC 14 H EC 10 H EC 21 H EC 21									
Sl. No.	Name of the Species	ILFS-12- HT	ILFS-12- LT	ILFS-14- HT	ILFS-14- LT	ILFS-19- HT	ILFS-19- LT	ILFS-21- HT	ILFS-21- LT			
	Polychaetes											
1	Ampharete acutifrons	25	100	50	25	50	50	25	75			
2	Dorvillea rudolphi	50	25	50	25	50	25	50	25			
3	Chone collaris	50	25	175	25	50	50	75	75			
4	C. filicaudata	25	50	50	*	50	50	50	50			
5	Cirratulus chrysoderma	50	75	25	50	75	50	25	75			
6	C. cirratus	25	25	25	25	25	75	50	50			
7	Cossura coasta	50	25	75	25	50	25	75	25			
8	Euchone rosea	25	50	25	*	25	175	50	25			
9	Euclymene lumbricoides	50	75	50	25	50	25	125	25			
10	Exogone clavator	50	25	75	25	25	50	50	75			
11	Glycera benguellana	50	75	50	25	50	100	50	75			
12	Goniada emerita	50	50	50	25	25	*	25	50			
13	Nephtys dibranchis	125	75	25	*	150	50	25	125			
14	Nereis sp.	50	25	`25	25	50	25	50	25			
15	Notomastus aberans	75	75	*	75	75	75	25	25			
16	N. faveli	25	*	50	125	25	50	50	150			
17	Onuphis eremita	75	25	50	25	75	25	25	25			
18	O. gracilis	25	50	*	25	75	25	25	25			
19	Owenia fusiformis	75	50	50	75	25	75	75	75			

20	Pista cristata	50	25	50	75	75	25	25	*
21	Prionospio cirrifera	25	50	75	100	225	25	50	50
22	Pygospio elegans	25	25	125	75	125	50	*	50
23	Scolelepis squamata	50	50	50	75	75	25	125	25
24	Syllis gracilis	75	75	25	50	50	50	150	50
25	Terebellides stroemi	50	25	50	150	25	*	25	75
	Gastropods								
26	Cerithedia cingulata	75	125	50	25	125	25	25	25
27	Nassarius stollatus	25	50	25	50	50	125	150	*
28	Natica didyma	50	150	75	25	25	150	150	50
29	Turritella attenuata	50	50	50	100	25	50	50	25
30	Umbonium vestiarium	25	25	50	50	50	25	50	75
	Crustaceans								
31	Ampithoe rubricata	25	75	75	25	25	125	50	25
32	Copepod nauplii	75	25	50	50	*	75	*	75
33	Penaeid shrimp larvae	50	75	50	50	50	50	25	*
	Bivalves								
34	Cardium veligers	125	25	25	100	75	25	25	25
35	Crassostrea madrasensis	50	25	75	75	25	25	25	75
36	Donax scortum	75	*	175	75	75	25	50	25
37	Perna viridis	50	75	75	50	75	75	75	25
	Total	1900	1850	2025	1825	2175	1950	1975	1750

^{*}Organisms not present

2.1. Meiobenthos Density and Diversity

The density and species diversity of Meiobenthos recorded in various stations of ITPCL power project site at Parangipettai are given in Tables 13(a) and 13(b). The population density varied from 175 to 242 Nos/10cm² with minimum density was recorded at station ILFS-21-LT (Papaa canal) during low tide and maximum was at the Outfall location (station ILFS-2-HT).

TABLE 13(a) Density and Diversity of Meiobenthos recorded in various stations of ITPCL Power project site during January 2025

		Nos./10cm ²										
Sl. No.	Name of the Species	ILFS-2- HT	ILFS-2- LT	ILFS-5- HT	ILFS-5- LT	ILFS-6- HT	ILFS-6- LT	ILFS-7- HT	ILFS-7- LT	ILFS-16- HT	ILFS-16- LT	
	Nematodes											
1	Daptonema conicum	4	8	4	10	4	4	10	6	6	6	
2	Halalaimus filum	6	2	4	8	10	8	14	6	10	6	
3	Astomonema jenneri	4	4	4	4	8	4	6	*	8	4	
4	Pselionema sp.	10	4	12	6	4	6	6	*	6	*	
5	Stephanolaimus sp.	12	6	10	8	10	6	8	6	*	6	
6	Quadricoma sp.	10	10	10	4	6	10	*	8	6	8	
7	Araeolaimus longicauda	6	5	4	10	12	6	10	6	4	10	
	Foraminiferans											
8	Ammonia beccarii	10	8	4	8	*	4	8	8	6	10	
9	A. tepida	5	5	12	6	14	6	6	4	12	6	
10	Bolivina limbata	12	10	8	8	6	10	10	6	6	6	
11	Elphidium texanum	4	5	4	*	14	12	10	4	4	4	
12	Lagena lacunata	6	*	*	4	6	5	4	14	6	8	
13	Lagena semistriata	4	5	6	10	12	6	10	6	4	10	

14	Nonion depressulum	10	6	8	8	4	4	*	8	6	8
15	Quinqueloculina sp.	12	8	9	14	10	8	6	8	5	4
16	Eponides repandus	4	*	*	8	10	12	2	4	10	4
17	Globigerina rubber	4	4	*	6	8	*	4	6	10	6
18	Rosalina globularis	6	8	4	10	4	4	10	6	9	6
19	Rotalia vilardeboana	10	4	18	6	*	6	*	12	8	2
20	Spirillina limbata	6	2	6	8	10	8	14	6	10	6
21	Spiroloculina excavata	10	4	12	6	4	6	6	*	6	*
22	Textularia agglutinans	4	8	6	4	6	8	14	4	8	10
	Ostrocodes										
23	Leguminocythereis oertlii	6	8	12	8	12	14	8	4	10	8
24	Patagonia theretricostata	12	6	8	10	8	8	10	6	*	6
25	Eucythere argus	12	6	10	8	*	6	8	6	*	6
26	Paracytheroma sudaustralis	8	8	6	10	12	12	10	4	10	12
27	Cytheromorpha fuscata	10	10	10	6	6	10	*	8	6	8
28	Stenocypris major	6	6	10	*	4	4	*	10	4	6
	Harpacticoids										
29	Diarthrodes major	8	10	6	6	6	4	12	4	*	4
30	Euterpina acutifrons	9	8	4	4	4	4	*	6	4	8
31	Harpacticus chelifer	6	10	9	8	6	5	4	2	12	*
32	Paramesochra dubia	*	14	12	4	8	8	12	6	4	2
33	Macrosetella gracilis	6	*	6	2	4	2	8	*	6	10
	Total	242	202	238	222	232	220	230	184	206	200

^{*} Organisms not present

TABLE 13(b) Density and Diversity of Meiobenthos recorded in various stations of ITPCL Power project site during January 2025

	Name of the Species		Nos./10cm ²										
Sl. No.		ILFS-12- HT	ILFS-12- LT	ILFS-14- HT	ILFS-14- LT	ILFS-19- HT	ILFS-19- LT	ILFS-21- HT	ILFS-21- LT				
	Nematodes												
1	Daptonema conicum	8	14	14	8	*	6	2	6				
2	Halalaimus filum	16	6	4	10	9	8	12	9				
3	Astomonema jenneri	8	8	6	6	9	12	8	5				
4	Pselionema sp.	12	6	6	4	8	4	6	*				
5	Stephanolaimus sp.	10	*	12	2	*	4	4	6				
6	Quadricoma sp.	8	2	0	6	16	12	10	*				
7	Araeolaimus longicauda	*	6	6	4	8	4	6	10				
	Foraminiferans												
8	Ammonia beccarii	10	4	10	10	*	6	8	*				
9	Ammonia tepida	6	8	4	6	6	4	2	10				
10	Bolivina limbata	9	8	6	8	4	6	4	4				
11	Elphidium texanum	12	6	*	4	8	4	4	*				
12	Lagena lacunata	4	4	6	8	6	4	6	10				
13	Lagena semistriata	12	8	6	4	10	6	6	6				
14	Nonion depressulum	8	*	9	8	8	4	14	*				
15	Quinqueloculina sp.	10	*	6	4	5	8	6	6				
16	Eponides repandus	10	8	14	2	9	6	*	8				
17	Globigerina rubber	9	6	6	8	7	12	4	4				

18	Rosalina globularis	4	*	4	6	10	4	8	6
19	Rotalia vilardeboana	6	12	6	*	9	*	10	*
20	Spirillina limbata	10	12	12	*	8	6	2	9
21	Spiroloculina excavata	4	10	8	6	4	12	4	8
22	Textularia agglutinans	6	2	2	10	6	4	6	8
	Ostrocodes								
23	Leguminocythereis oertlii	*	6	8	10	12	8	12	10
24	Patagonia theretricostata	8	8	4	16	10	12	8	4
25	Eucythere argus	10	*	12	2	*	4	4	6
26	Paracytheroma sudaustralis	8	14	14	4	*	6	2	8
27	Cytheromorpha fuscata	8	2	0	6	4	4	10	*
28	Stenocypris major	*	6	6	4	8	8	16	10
	Harpacticoids								
29	Diarthrodes major	6	8	4	6	8	4	2	10
30	Euterpina acutifrons	8	6	4	4	6	10	4	*
31	Harpacticus chelifer	*	4	2	2	6	*	2	6
32	Paramesochra dubia	*	4	10	10	*	6	8	*
33	Macrosetella gracilis	*	6	2	12	12	4	8	6
	Total	230	194	213	200	216	202	208	175

^{*}Organisms not present

CONCLUDING REMARKS

In the present survey, made on 20th January - 2025, as has been done during previous months, the physico-chemical and biological parameters were analyzed both in the water and sediment samples collected from 18 stations by considering high and low tides at ITPCL Power Project site, Parangipettai. As a whole, the physico-chemical parameters did not show much variation except a few parameters which indicated only marginally. Further, the results of physico-chemical and biological parameters indicate that the water is well oxygenated and nutrient parameters were adequate enough supporting relatively good planktonic organisms as they form base in the food chain. Regarding the biological parameters, the diatom species recorded during this survey were Nitzschia longissima, Navicula henneydii, Stephanopyxis palmeriana, Ceratium furca, Bacteriastrum hyalinium, Chaetoceros coarctatus, Biddulphia reticulate, Coscinodiscus granii, Melosira borreri and Lauderia borealis were recorded commonly during the survey. Besides, the conservative macro benthic species like Peridinium claudicans, Protoperidinium oceanicum, Terebellides stroemi, Nephtys polybranchia, and Cirratulus chrysoderma were predominantly reported in the ITPCL site, Parangipettai coastal waters, which are again indicating the stable nature of the ecosystem. Not only is that, the metal concentration in coastal waters and sediment samples indicates that it is well within the ERM (Effective Range Median) values indicating there are no possibilities of Heavy metal contamination in the region. In short, comparing the values of the seawater quality, sediment quality and biotic components in and around the ITPCL Power Project at Parangipettai collected during previous months suggests that there is no marked variation in the levels of physicochemical parameters and are found to be in the recommended limits.